Transient and Specific Inactivation of Drosophila Neurons In Vivo Using a Native Ligand-Gated Ion Channel

نویسندگان

  • Wendy W. Liu
  • Rachel I. Wilson
چکیده

A key tool in neuroscience is the ability to transiently inactivate specific neurons on timescales of milliseconds to minutes. In Drosophila, there are two available techniques for accomplishing this (shibire(ts) and halorhodopsin [1-3]), but both have shortcomings [4-9]. Here we describe a complementary technique using a native histamine-gated chloride channel (Ort). Ort is the receptor at the first synapse in the visual system. It forms large-conductance homomeric channels that desensitize only modestly in response to ligand [10]. Many regions of the CNS are devoid of histaminergic neurons [11, 12], raising the possibility that Ort could be used to artificially inactivate specific neurons in these regions. To test this idea, we performed in vivo whole-cell recordings from antennal lobe neurons misexpressing Ort. In these neurons, histamine produced a rapid and reversible drop in input resistance, clamping the membrane potential below spike threshold and virtually abolishing spontaneous and odor-evoked activity. Every neuron type in this brain region could be inactivated in this manner. Neurons that did not misexpress Ort showed negligible responses to histamine. Ort also performed favorably in comparison to the available alternative effector transgenes. Thus, Ort misexpression is a useful tool for probing functional connectivity among Drosophila neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Action Potential, Synaptic Transmission, and Maintenance of Nerve Function

1. Nongated ion channels establish the resting membrane potential of neurons; voltage-gated ion channels are responsible for the action potential and the release of neurotransmitter. 2. Ligand-gated ion channels cause membrane depolarization or hyperpolarization in response to neurotransmitter. 3. Nongated ion channels are distributed throughout the neuronal membrane; voltage-gated channels are...

متن کامل

Electrophysiological development of central neurons in the Drosophila embryo.

In this study, we describe the development of electrical properties of Drosophila embryonic central neurons in vivo. Using whole-cell voltage clamp, we describe the onset of expression of specific voltage- and ligand-gated ionic currents and the first appearance of endogenous and synaptic activity. The first currents occur during midembryogenesis [late stage 16, 13-14 hr after egg laying (AEL)]...

متن کامل

Phase Coupling of a Circadian Neuropeptide With Rest/Activity Rhythms Detected Using a Membrane-Tethered Spider Toxin

Drosophila clock neurons are self-sustaining cellular oscillators that rely on negative transcriptional feedback to keep circadian time. Proper regulation of organismal rhythms of physiology and behavior requires coordination of the oscillations of individual clock neurons within the circadian control network. Over the last decade, it has become clear that a key mechanism for intercellular comm...

متن کامل

An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons

The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...

متن کامل

Divalent cation modulation of a-type potassium channels in acutely dissociated central neurons from wide-type and mutant Drosophila.

Drosophila mutants provide an ideal model to study channel-type specificity of ion channel regulation in situ. In this study, the effects of divalent cations on voltage-gated K+ currents were investigated in acutely dissociated central neurons of Drosophila third instar larvae using the whole-cell patch-clamp recording. Our data showed that micromolar Cd2+ enhanced the peak inactivating current...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2013